Skewing the aim of targeted cancer therapies

Headlines, of late, have touted the successes of targeted gene-based cancer therapies, such as immunotherapies, but, unfortunately, also their failures.

Broad inadequacies in a widespread biological concept that affects cancer research could be significantly deflecting the aim of such targeted drugs, according to a new study. A team exploring genetic mechanisms in cancer at the Georgia Institute of Technology has found evidence that a prevailing concept about how cells produce protein molecules, particularly when applied to cancer, could be erroneous as much as two-thirds of the time.

Prior studies by other researchers have also critiqued this concept about the pathway leading from genetic code to proteins, but this new study, led by cancer researcher John McDonald, has employed rare analytical technology to explore it in unparalleled detail. The study also turned up novel evidence for regulating mechanisms that could account for the prevailing concept’s apparent shortcomings.

RNA concept incomplete

The concept stems from common knowledge about the assembly line inside cells that starts with code in DNA, is transcribed to messenger RNA, then translated into protein molecules, the cell’s building blocks.

That model seems to have left the impression that cellular protein production works analogously to an old-style factory production line: That the amount of a messenger RNA encoded by DNA on the front end translates directly into the amount of a corresponding protein produced on the back end. That idea is at the core of how gene-based cancer drug developers choose their targets.

To put that assumed congruence between RNA production and protein production to the test, the researchers examined — in ovarian cancer cells donated by a patient — 4,436 genes, their subsequently transcribed messenger RNA, and the resulting proteins. The assumption, that proverbial factory orders passed down the DNA-RNA line determine in a straightforward manner the amount of a protein being produced, proved incorrect 62 percent of the time.

RNA skews drug cues

“The messenger RNA-protein connection is important because proteins are usually the targets of gene-based cancer therapies,” McDonald said. “And drug developers typically measure messenger RNA levels thinking they will tell them what the protein levels are.” But the significant variations in ratios of messenger RNA to protein that the researchers found make the common method of targeting proteins via RNA seem much less than optimal.

McDonald, Mengnan Zhang and Ronghu Wu published their results on August 15, 2017 in the journal Scientific Reports. The work was funded by the Ovarian Cancer Institute, The Deborah Nash Endowment, Atlanta’s Northside Hospital and the National Science Foundation. The spectrophotometric technology needed to closely identify a high number of proteins is rare and costly but is available in Wu’s lab at Georgia Tech.

Whereas many studies look at normal tissue versus cancerous tissue, this new study focused on cancer progression, or metastasis, which is what usually makes cancer deadly. The researchers looked at primary tumor tissue and also metastatic tissue.

Hiding drug targets

“The idea that any change in RNA level in cancerous development flows all the way up to the protein level could be leading to drug targeting errors,” said McDonald, who heads Georgia Tech’s Integrated Cancer Research Center. Drug developers often look for oddly high messenger RNA levels in a cancer then go after what they believe must be the resulting oddly high levels of a corresponding protein.

Taking messenger RNA as a protein level indicator could actually work some of the time. In the McDonald team’s latest experiment, in 38 percent of the cases, the rise of RNA levels in cancerous cells did indeed reflect a comparable rise of protein levels. But in the rest of cases, they did not.

“So, there are going to be many instances where if you’re predicting what to give therapeutically to a patient based on RNA, your prescription could easily be incorrect,” McDonald said. “Drug developers could be aiming at targets that aren’t there and also not shooting for targets that are there.”

RNA muted or magnified

The analogy of a factory producing building materials can help illustrate what goes wrong in a cancerous cell, and also help describe the study’s new insights into protein production. To complete the metaphor: The materials produced are used in the construction of the factory’s own building, that is, the cell’s own structures.

In cancer cells, a mutation makes protein production go awry usually not by deforming proteins but by overproducing them. “A lot of mutations in cancer are mutations in production levels. The proteins are being overexpressed,” said McDonald, who is also a professor in Georgia Tech’s School of Biological Sciences.

A bad factory order can lead to the production of too much of a good material and then force it into the structures of the cell, distorting it. The question is: Where in the production line do bad factory orders appear?

According to the new study, the answer is less straightforward than perhaps previously thought.

Micro RNA managing

The orders don’t all appear on the front end of the assembly line with DNA over-transcribing messenger RNA. Additionally, some mutations that do over-transcribe messenger RNA on the front end are tamped down or canceled by regulating mechanisms further down the line, and may never end up boosting protein levels on the back end.

Regulating mechanisms also appear to be making other messenger RNA, transcribed in normal amounts, unexpectedly crank out inordinate levels of proteins.

At the heart of those regulating systems, another RNA called micro RNA may be micromanaging how much, or little, of a protein is actually produced in the end.

“We have evidence that micro RNAs may be responsible for the non-correlation between the proteins and the RNA, and that’s completely novel,” McDonald said. “It’s an emerging area of research.”

Micro RNA, or miRNA, is an extremely short strand of RNA.

No one at fault

McDonald would like to see tissues from more cancer patients undergo similar testing. “Right now, with just one patient, the data is limited, but I also really think it shows that the phenomenon is real,” McDonald said.

“Many past studies have looked at one particular protein and a particular gene, or a particular handful. We looked at more than 4,000,” McDonald said. “What that brings up is that the phenomenon is probably not isolated but instead genome-wide.”

The study’s authors would also like to see rarely accessible, advanced protein detecting technology become more widely available to biomolecular researchers, especially in the field of cancer drug development. “Targeted gene therapy is a good idea, but you need the full knowledge of whether it’s affecting the protein level,” McDonald said.

He pointed out that no one is at fault for the possible incompleteness of commonly held concepts about protein production.

As science progresses, it naturally illuminates new details, and formerly useful ideas need updating. With the existence of new technologies, it may be time to flesh out this particular concept for the sake of cancer research progress.

Research opens possibility of reducing risk of gut bacterial infections with next-generation probiotic

A team of researchers is exploring the possibility that next-generation probiotics – live bacteria that are good for your health – would reduce the risk of infection with the bacterium Clostridium difficile. In laboratory-grown bacterial communities, the researchers determined that, when supplied with glycerol, the probiotic Lactobacillus reuteri produced reuterin, an antibacterial compound that selectively killed C. difficile. The study appears in Infection and Immunity.

C. difficile causes thousands of deaths and billions of dollars in healthcare expenses in the U.S. each year. Although most patients respond to antibiotic treatment, up to 35 percent will relapse and require extended antibiotic treatments,” said first and corresponding author Dr. Jennifer K. Spinler, instructor of pathology & immunology at Baylor College of Medicine, who oversees microbial genetics and genomics efforts at the Texas Children’s Microbiome Center at Texas Children’s Hospital.

C. difficile infections are the most common cause of diarrhea associated with the use of antibiotics. If these bacteria attempt to invade the human gut, the ‘good bacteria,’ which outnumber C. difficile, usually prevent them from growing. However, when a person takes antibiotics, for example to treat pneumonia, the antibiotic also can kill the good bacteria in the gut, opening an opportunity for C. difficile to thrive into a potentially life-threatening infection.

“When repeated antibiotic treatments fail to eliminate C. difficile infections, some patients are resorting to fecal microbiome transplant – the transfer of fecal matter from a healthy donor – which treats the disease but also could have negative side effects,” Spinler said. “We wanted to find an alternative treatment, a prophylactic strategy based on probiotics that could help prevent C. difficile from thriving in the first place.”

“Probiotics are commonly used to treat a range of human diseases, yet clinical studies are generally fraught by variable clinical outcomes and protective mechanisms are poorly understood in patients. This study provides important clues on why clinical efficacy may be seen in some patients treated with one probiotic bacterium but not with others,” said senior author Dr. Tor Savidge, associate professor of pathology & immunology and of pediatrics at Baylor and the Texas Children’s Microbiome Center.

Working in the Texas Children’s Microbiome Center, Spinler and her colleagues tested the possibility that probiotic L. reuteri, which is known to produce antibacterial compounds, could help prevent C. difficile from establishing a microbial community in lab cultures.

An unexpected result with major implications for a preventative strategy

Spinler and Savidge established a collaboration with co-author Dr. Robert A. Britton, professor of molecular virology and microbiology at Baylor and member of the Dan L Duncan Comprehensive Cancer Center.

The Britton lab uses mini-bioreactor arrays – multiple small culture chambers – that provide a platform in which researchers could recreate the invasion of an antibiotic-treated human intestinal community by C. difficile.

“Using the mini-bioreactors model we showed that L. reuteri reduced the burden of C. difficile infection in a complex gut community,” Britton said. “To achieve its beneficial effect, L. reuteri requires glycerol and converts it into the antimicrobial reuterin.”

The literature reports reuterin as a broad-spectrum antibiotic; it affects the growth of a wide variety of bacteria when they are tested individually in the lab. What was intriguing in this study is that reuterin didn’t have a broad-spectrum effect in the mini-bioreactor bacterial community setting.

“I expected reuterin to have an antibacterial effect on several different types of bacteria in the community, but it only affected C. difficile and not the good bacteria, which was exciting because it has major implications for a preventative strategy,” Spinler said.

“Although these results are too preliminary to be translated directly into human therapy, they provide a foundation upon which to further develop treatments based on co-administration of L. reuteri and glycerol to prevent C. difficile infection,” said co-author Dr. Jennifer Auchtung, director of the Cultivation Core at Baylor’s Alkek Center for Metagenomics and Microbiome Research and assistant professor of molecular virology and microbiology at Baylor.

In the future, this potential treatment could be administered prophylactically to patients before they take antibiotics known to disrupt normal gut microbes. The L. reuteri/glycerol formulation would help maintain the healthy gut microbial community and also help prevent the growth of C. difficile, which would result in decreased hospital stay and costs and reduced long-term health consequences of C. difficile recurrent infections.

Penn study details impact of antibiotics, antiseptics on skin microbiomes

The use of topical antibiotics can dramatically alter communities of bacteria that live on the skin, while the use of antiseptics has a much smaller, less durable impact. The study, conducted in mice in the laboratory of Elizabeth Grice, PhD, an assistant professor of Dermatology in the Perelman School of Medicine at the University of Pennsylvania, is the first to show the long-term effects of antimicrobial drugs on the skin microbiome. Researchers published their findings today in the journal Antimicrobial Agents and Chemotherapy.

The skin, much like the gut, is colonized by a diverse multitude of microorganisms which generally coexist as a stable ecosystem — many of which are harmless or even beneficial to the host. However, when that ecosystem is disturbed or destabilized, colonization and/or infection by more dangerous microbes can occur. Antiseptics, such as ethanol or iodine, are commonly used to disinfect the skin prior to surgical procedures or following exposure to contaminated surfaces or objects. Topical antibiotics may be used to decolonize skin of specific types of bacteria or for rashes, wounds, or other common conditions.

In the gut, research shows medication that alters microbial communities can lead to complications like Clostridium difficile, or C. diff — which causes diarrhea and is the most common hospital-acquired infection. But when it comes to the skin, the impact of these medications on bacteria strains like Staphylococcus aureus, or S. aureus — the most common cause of skin infections — is still largely unstudied.

“We know antibiotics and antiseptics can be effective in stopping the growth of certain bacteria, but we wanted to know about the larger impact these treatments can have on the resident microbial communities on the skin,” said the study’s lead author, Adam J. SanMiguel, PhD, a researcher in the Grice Laboratory at Penn.

Researchers treated the skin of hairless mice with a variety of antibiotics, including a narrowly targeted mupirocin ointment and a broadly applicable triple-antibiotic ointment (TAO) containing bacitracin, neomycin, and polymyxin B. All of the antibiotics changed the makeup of the microbial communities, and, in a key finding of the study, the impact of that change lasted for days after treatment stopped.

“The problem in this case isn’t antibiotic resistance, but instead, how long the disruption of the skin microbiomes continues,” SanMiguel said. “That disruption opens the door for colonization by an unwanted strain.”

The researchers similarly evaluated antiseptics, using alcohol or povidone-iodine and comparing those treatments with two control groups – mice treated with water and mice entirely untreated. They found neither antiseptic caused responses similar enough to cluster the mice together into groups based on their microbiomes. They also found no clear difference between the treatment groups and the control groups when comparing the relative number of individual bacteria strains.

“We thought antiseptics would be even more disruptive to microbial communities than antibiotics since they are less targeted, but it turns out the opposite is true,” SanMiguel said. “It shows how stable the skin microbiome can be in the face of stress.”

However, both antibiotic and antiseptic treatments removed skin resident bacteria that compete against the pathogenic S. aureus to colonize the skin. Colonization with S. aureus is a risk factor for developing a skin infection.

“This gives us a better understanding of how topical antimicrobials affect the skin microbiome and what kind of impact their disturbance can have in the context of pathogenic colonization,” said Grice, the study’s senior author. “This helps us anticipate their potential effects.”

The researchers say this work can provide the foundation for greater understanding of how the skin defends against infection. They have already begun similar testing in humans.

Tumor immune fitness determines survival of lung cancer patients

In recent years, immunotherapy, a new form of cancer therapy that rouses the immune system to attack tumor cells, has captivated the public’s imagination. When it works, the results are breathtaking. But more often than not it doesn’t, and scientists still don’t know why.

Publishing in the June 19, 2017, issue of Nature Immunology, researchers at La Jolla Institute for Allergy and Immunology, identify a subpopulation of T cells in tumors known as tissue-resident memory T cells (TRM) as an important distinguishing factor between cancer patients whose immune system mounts an effective anti-tumor response and those who are unable to do so. Their finding emerged from the first large-scale effort to profile the gene expression patterns of cytotoxic T cells isolated directly from patients’ tumors.

“Systematically studying cancer patients’ immune cells reveals a lot of information,” says LJI Associate Professor and William K. Bowes Jr. Distinguished Professor Pandurangan Vijayanand, M.D., Ph.D., who co-directed the study with Professor Christian Ottensmeier at the University of Southampton, England. “It could be a baseline test to predict whether a patient will respond to immunotherapy and guide the choice of immunotherapy that is most likely to be effective. It is almost like judging tumor immune fitness,” adds Vijayanand. The systematic profiling of tumor-infiltrating T cells will also provide new insight into their basic biology revealing new potential immunotherapy drug targets.

Scientists initially found that when T cells were swarming a patient’s tumor that patient lived longer. Over time, however, they found that T-cells lose their fervor and cancer cells gain the upper hand. In the last decade they discovered why: Inhibitory molecular signals emitted from a tumor or its environment undercut the immune response, making tumor cells invisible to the immune system. One class of cancer immunotherapy drugs, known as checkpoint blockade inhibitors, disables either PD-1 or CTLA-4, two known molecules that allow cancer cells to live and multiply undetected by the immune system.

“The challenge with immunotherapy based on PD-1 and CTLA-4 is that if they work, they work miraculously, but they only work in about 30 percent of patients,” says the study’s first author, Anusha-Preethi Ganesan, M.D., Ph.D., a physician in the Division of Pediatric Hematology and Oncology at Rady’s Children’s Hospital, UC San Diego. “If we are doing all these immunotherapies based on activating T cells to kill tumor cells it is really important to know what the transcriptional profiles of these T cells are, what molecules do they make?”

To uncover the underlying reasons why some patients see little or no benefit and to identify those patients most likely to respond, Ganesan utilized advanced genomics tools to define the molecular features of a robust anti-tumor immune response using freshly resected tumors from patients with cancer. Comparing gene expression profiles of cytotoxic T cells (CTLs) isolated from 41 head and neck tumors and 36 untreated, early stage lung tumors with CTLs isolated from adjacent normal lung tissue, Ganesan identified a shared molecular fingerprint between different tumor types suggesting extensive reprogramming of CTLs infiltrating tumor tissue.

Beyond their shared molecular signature, tumor-infiltrating CTLs differed widely in their expression of molecules associated with T cell activation and known immune checkpoints. “There is a huge deal of heterogeneity, which has a lot of implications for immunotherapy,” says Ganesan. “We see the traditional immunotherapy targets but they are not expressed in every single patient, which means not every patient is a candidate for currently available immunotherapies targeted at PD-1 or CTL4-1. That’s why having the full transcriptional profile is so important to understand the entire complexity of the immune network and to identify novel targets.”

Interestingly, gene expression patterns that signal the presence of tissue resident memory T cells (TRM) corresponded with better anti-tumor activity. The only recently identified tissue resident memory T cells act as local first responders that provide rapid onsite immune protection. A large scale analysis in an independent cohort of 689 lung cancer patients confirmed that patients with a high density of TRM cells in tumor tissue survived significantly longer, demonstrating that these cells serve a critical role in protecting against tumor recurrence.

“Any time you remove a tumor, the patient is a ticking time bomb after that. In some people it will come back and it others it won’t,” says Vijayanand. “Our study suggests that the presence of these tissue resident memory cells is an important factor in determining whether somebody is having an effective immune response against cancer and whether they will live longer.”

Body’s Immune Response to Bioterrorism Bacteria That Causes Tularemia Is Focus of Ongoing Research

Meenakshi Malik, Ph.D., an Associate Professor in the Department of Basic and Clinical Sciences at Albany College of Pharmacy and Health Sciences, has been awarded a three-year research grant totaling $480,000 to expand her study of Francisella tularensis, a bacterium that causes a potentially fatal disease called tularemia.

The grant, which is being funded by the National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health (NIH), is the “competing continuation” of a previously-funded NIH research grant that Dr. Malik received in 2013.

“HIGHEST RISK TO THE PUBLIC AND NATIONAL SECURITY”

Francisella tularensis has been classified by the Centers for Disease Control as a Category A bioterrorism agent. Organisms or toxins in this class are defined as “posing the highest risk to the public and national security.” Other Category A agents include pathogens causing anthrax, plague, and smallpox.

Francisella tularensis is particularly dangerous because it can be easily aerosolized and survive in small droplets for prolonged periods of time. If infected and left untreated, the mortality rate can be as high as 60%. There is currently no FDA approved vaccine for preventing tularemia.

INITIAL RESEARCH FINDINGS (2013 – 2016)

If someone becomes infected by a disease-causing organism, the body’s immune system instinctively responds as the first line of defense. But with Francisella tularensis, the immune response is effectively muted in the first 48-72 hours following infection, thereby inhibiting the body’s ability to successfully fight off the bacterium.

The focus of Dr. Malik’s first NIH grant was to explore how Francisella tularensis stifles the immune system and try to determine what causes the protective immune response to “kick in” after this initial period.

Over the course of this grant, Dr. Malik’s lab found several genetic factors that play a role in temporarily disabling the body’s initial immune response to a Francisella infection. Upon identifying these factors, Dr. Malik removed the genes encoding these factors from the bacterium and saw the immune response improve – an encouraging sign that may begin to point the way towards the development of a vaccine.

Over the period of the grant, she authored six publications in peer reviewed journals including Molecular Microbiology and the Journal of Biological Chemistry. Her findings and related publications in part led the NIH committee who reviewed her new grant application to write, “the productivity during the last project period [was] outstanding.”

FUTURE DIRECTION OF RESEARCH (2016 – 2019)

The human body has two types of immune responses to an infection: (1) innate immunity and (2) adaptive immunity. Innate immunity is a general immune response that begins at the onset of any infection and typically continues for 5-7 days. After this initial period, the body begins developing antibody and “cell-mediated” immune responses that are targeted towards the specific infection; this is adaptive immunity.

Until recently, it was believed that these immune responses were two separate actions, but a growing body of evidence now suggests that the innate immune response plays an important role in shaping the adaptive immune responses.

Dr. Malik will focus her efforts over the next three years on studying the connection between the innate and adaptive immune responses in Francisella tularensis infections. Specifically, she will seek to determine if an improved innate immune response can lead to a more effective adaptive immune response, and ultimately, help in the development of an effective vaccine against tularemia.

In parallel with these efforts, she will continue searching for additional factors that may be responsible for muting the body’s initial immune response to a Francisella tularensis infection.

Flesh-Eating Infections In Rheumatoid Arthritis Patients Spur New Discovery

Rheumatoid arthritis patients taking medications that inhibit interleukin-1beta (IL-1beta), a molecule that stimulates the immune system, are 300 times more likely to experience invasive Group A Streptococcal infections than patients not on the drug, according to University of California San Diego School of Medicine researchers. Their study, published August 19 in Science Immunology, also uncovers a critical new role for IL-1beta as the body’s independent early warning system for bacterial infections.

“The more we know about each step in the body’s immune response to bacterial infections, the better equipped we are to design more personalized, targeted therapies for autoimmune diseases — therapies that are effective, but minimize risk of infection,” said senior author Victor Nizet, MD, professor of pediatrics and pharmacy at UC San Diego School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences.

IL-1beta is a molecule that stimulates an immune response, calling white blood cells to the site of an infection so they can engulf and clear away invading pathogens. The body first produces the molecule in a longer, inactive form that must be cleaved to be activated. The scientific community long believed that only the body itself could cleave and activate IL-1beta, by employing a cellular structure known as the inflammasome. But in experiments using cell cultures and mouse models of infection, Nizet and team found that SpeB, an enzyme secreted by strep bacteria, also cleaves and activates IL-1beta, triggering a protective immune response.

“This finding may explain why some of the more invasive, flesh-eating strep strains have a genetic mutation that blocks SpeB production — it helps them avoid tripping the alarm and setting off an immune response,” said first author Christopher LaRock, PhD, a postdoctoral researcher in Nizet’s lab.

The researchers hypothesize that for less invasive strains, like those that cause strep throat, producing SpeB and activating IL-1beta might be advantageous — the resulting immune response may wipe out competing bacteria and help strep establish a foothold in the body.

While the human immune system can quickly recognize and respond to bacterial infections, sometimes this reaction can go overboard, leading to autoimmune diseases such as rheumatoid arthritis. In this case, a person’s own immune system attacks “self” proteins instead of just foreign invaders.

In their efforts to investigate IL-1beta function, Nizet, LaRock and team analyzed a U.S. Food and Drug Administration (FDA) database on adverse events in rheumatoid patients who took anakinra, a drug that dampens autoimmunity by inhibiting IL-1beta. They found that patients receiving anakinra were more than 300 times more likely to experience invasive, flesh-eating strep infections than patients not taking the drug.

“A likely explanation for this increased risk is that with IL-1beta out of the picture, as is the case with patients taking anakinra, strep strains can progress to invasive infection even while producing SpeB, which goes unnoticed by the immune system,” LaRock said.

This finding underscores IL-1beta’s importance as an early warning system that’s triggered not only by the host, but also directly by bacterial enzymes, essentially “taking out the middle man,” Nizet said. The UC San Diego researchers believe this capacity for direct pathogen detection represents IL-1beta’s original role in immunity, going all the way back in evolution to simpler animals, such as fish.

“Inhibiting the body’s bacterial sensor can put a person at risk for invasive infection,” Nizet said, “but just the fact that we now know that this patient population is at higher risk and why means we can take simple steps — such as close monitoring and prophylactic antibiotics — to prevent it from happening. ”

UMN researchers find distinct differences in structure, features of retroviruses

In the most comprehensive study of its kind, researchers in the Institute for Molecular Virology and School of Dentistry at the University of Minnesota report that most types of retroviruses have distinct, non-identical virus structures.

Researchers analyzed seven different retroviruses including two types of HIV as well as HTLV-1, a virus that causes T-cell leukemia. They also examined retroviruses that infect birds, mice, chimpanzees and fish, that can cause cancer or immunodeficiency.

“Each kind of retrovirus has distinct structural features and each assembles virus particles differently,” said Louis Mansky, Ph.D., director of the Institute for Molecular Virology, who is also a member of the Masonic Cancer Center. “Most researchers assume that all retroviruses are just like HIV, but they’re not. We cannot take a one-size-fits-all approach when studying retroviruses and discovering new strategies for antiviral treatments or vaccines.”

Mansky’s team looked at the behavior of retrovirus Gag proteins, which drive retrovirus particle formation. Once the virus enters a cell, reverse transcriptase converts the viral RNA to DNA, which subsequently creates the Gag protein.

Understanding the nature of Gag protein interactions with one another and how the structures form will help scientists better understand how and why the virus works. It will also help identify ways to target the virus and prevent it from infecting a cell in the first place.

The study examined virus-like particle size, cellular distribution and basic morphological features through three distinct microscopy techniques.

The team noted that:

– HIV-1 and HIV-2 have Gag proteins that assemble retrovirus-like particles with distinct structures and sizes, which implies that differences exist in how the two HIV types form new virus particles. – HIV and HTLV-1 particles are quite distinct from one another in appearance, which also suggests fundamental differences in virus particle assembly.

“We found significant differences among the retroviruses,” said Jessica Martin, senior Ph.D. student in the Department of Pharmacology and lead author on the study. “A parallel comparative study evaluating retroviral Gag proteins and virus particle intermediates of this size and scope has never been done before.”

The team was surprised to find that one of the retroviruses, walleye dermal sarcoma virus (WDSV), did not readily produce virus particles.The disease can affect anything from 1-30 percent of walleye in a population, depending on the location. This research could help aquatic scientists better understand how to control the disease.

“Our study helps to highlight the importance of serendipity of basic science research,” Mansky said. “We set out to learn more about the differences among two important human retroviruses, namely HIV and HTLV, which we did, but our findings also shed light on important differences among all kinds of retroviruses that could inform not only the treatment of human viral diseases but could also impact aquatic health in fisheries.”

The study findings will help serve as a foundation for studying differences among retroviruses, including HIV.

“The scientific community can build off of our findings to develop new antiviral treatments, and hopefully determine how to stop these viruses from causing deadly diseases in humans such as cancer and AIDS,” Mansky said.

New International Initiative Will Focus on Immunology Research and Treatments

Immunology – and the idea that many diseases can best be addressed by boosting the body’s own immune response – is one of the hottest areas in medical research and clinical treatment. University of California San Diego School of Medicine and Chiba University School of Medicine in Japan have announced a new collaborative research center to investigate the most promising aspects of immunology, especially the area of mucosal immunology, and to speed development of clinical applications.

The Chiba University-UC San Diego Immunology Initiative and associated research center, to be based at UC San Diego School of Medicine, will be established with a $2 million contribution from Chiba University, the funding allocated over five years together with support from UC San Diego.

“This agreement reflects our shared interest in furthering scientific understanding of the human immune system, what happens when things go wrong and how best to remedy them,” said David Brenner, MD, vice chancellor, UC San Diego Health Sciences and dean of the School of Medicine.

“The microbiome has a major impact upon human health, particularly mucosal immune responses that affect virtually every type of disease, from acute and chronic conditions like infection, allergy, asthma, inflammatory bowel disease and arthritis to type 1 diabetes, multiple sclerosis and cancer. Hundreds of millions of people worldwide are affected by immune system dysfunction so the need to find new, effective treatments is incredibly powerful and compelling.”

The effort, which will be co-directed by Peter Ernst, DVM, PhD, professor of pathology at UC San Diego School of Medicine, and Hiroshi Kiyono, DDS, PhD, professor, University of Tokyo and Chiba University, will involve exchanges of faculty, researchers, staff and students. Initial joint projects will focus on medical and veterinary science, vaccine development, allergy, inflammation, infectious diseases, mucosal immunology and the interactions between mucosal immunity and commensal microbiota that promote health.

“This is a collaboration of partners, both with a deep interest in advancing immunology research across disciplines,” said Ernst, who also directs the Center for Veterinary Sciences and Comparative Medicine. “The topics we are grappling with are global in scale. We want to be leaders in both understanding mucosal immunology and in how to use that knowledge to prevent and treat a vast array of diseases such as infectious, allergic and inflammatory diseases. We want to cultivate the next generation of scientists, here, in Japan and around the world.”

Specifically, the agreement outlines creation of multiple affiliated laboratories with principal investigators at Chiba University, UC San Diego and the La Jolla Institute for Allergy and Immunology, which last year formed a multi-year partnership with UC San Diego to boost collaborative basic research of immune system diseases. The Chiba-UC San Diego initiative would also contribute to a new graduate program in immunology.

“Through collaboration and combined resources, we hope to develop new concepts and technologies that ultimately lead to development a preventive vaccine against infectious diseases, allergies and cancers, boosting the body’s ability to block the transmission of agents entering through mucous membranes,” said Takeshi Tokuhisa, MD, PhD, president of Chiba University. “It would be a new approach to next-generation vaccines.”