Public-Private Consortium Aims to Cut Preclinical Cancer Drug Discovery from Six Years to Just One

Scientists from two U.S. national laboratories, industry and academia today launched an unprecedented effort to transform the way cancer drugs are discovered by creating an open and sharable platform that integrates high-performance computing, shared biological data from public and industry sources and emerging biotechnologies to dramatically accelerate the discovery of effective cancer therapies.

The goal of the consortium – Accelerating Therapeutics for Opportunities in Medicine (ATOM) – is to create a new paradigm of drug discovery that would reduce the time from an identified drug target to clinical candidate from the current approximately six years to just 12 months. ATOM aims to transform cancer drug discovery from a time-consuming, sequential and high-risk process into an approach that is rapid, integrated and with better patient outcomes — using supercomputers to pretest many molecules simultaneously for safety and efficacy.

The consortium comprises the Department of Energy’s Lawrence Livermore National Laboratory (LLNL), GSK, the National Cancer Institute’s Frederick National Laboratory for Cancer Research (FNLCR), and the University of California, San Francisco (UCSF). ATOM welcomes additional public and private partners who share the vision.

“The goals of ATOM are tightly aligned with those of the 21st Century Cures Act, which aims in part to enable a greater number of therapies to reach more patients more quickly,” said FNLCR Laboratory Director David Heimbrook. “Although initially focused on precision oncology – treatments targeted specifically to the characteristics of the individual patient’s cancer – the consortium’s discoveries could accelerate drug discovery against many diseases.”

ATOM will develop, test and validate a multidisciplinary approach to drug discovery in which modern science, technology and engineering, supercomputing simulations, data science and artificial intelligence are highly integrated into a single drug-discovery platform that can untimately be shared with the drug development community at large.

“As we have learned more about what modern supercomputers can do, we’ve gained confidence that this approach can make a big difference in creating medicines,” said John Baldoni, senior vice president, R&D at GSK. “We must do all that we can to reduce the time it takes to get medicines to patients. GSK is working to set a precedent with pharmaceutical companies by sharing data on failed compounds.”

GSK will initially contribute chemical and in vitro biological data for more than 2 million compounds from its historic and current screening collection, as well as preclinical and clinical information on 500 molecules that have failed in development but could help accelerate development of new compounds by providing knowledge about the underlying biology of candidate compounds and that of the human body. Combined with data on successful drugs, GSK’s offering represents a broad base of information for ATOM researchers. In addition, GSK will provide expertise in drug discovery and development, computational chemistry and biology.

The ATOM team will combine data provided by GSK with publicly available data, and that of future consortium members, to generate new dynamic models that can better predict how molecules will behave in the body compared to the current iterative and time-consuming practices. In this effort, LLNL will contribute its best-in-class supercomputers, including its next-generation system Sierra, as well as its expertise and innovative approaches to modeling and simulation, cognitive computing, machine learning and algorithm development. More broadly, by tackling the ambitious challenge of cancer therapies, ATOM will drive technologies vital to the core missions of the Department of Energy and National Nuclear Security Administration (NNSA).

“ATOM is a novel public-private partnership that draws on the lab’s unique capabilities to create a paradigm change in drug development,” said LLNL Director Bill Goldstein. “It will help to strengthen U.S. leadership in high-performance computing and, by speeding the discovery of therapeutics, contribute to biosecurity.”

For its part, FNLCR will contribute from its wealth of scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive modeling and simulation tools. UCSF will provide expertise from a long history of innovation in drug discovery and medicine to improve the lives of patients.

“We at UCSF are eager to lend our expertise to this effort,” said UCSF Chancellor Sam Hawgood, MBBS. “UCSF scientists and clinicians have long been leaders in drug discovery, therapeutics, and cancer biology with the UCSF Helen Diller Family Comprehensive Care Center among the top-ranked cancer institutes in the country. Our role with ATOM is therefore in lock step with UCSF’s mission of advancing health worldwide.”

ATOM welcomes additional public and private partners who share the vision of the consortium, which will have physical headquarters in the Mission Bay neighborhood of San Francisco, adjacent to UCSF’s newest campus.

Moffitt Researchers Discover New Targets for Approved Cancer Drug

New study shows ALK inhibitor ceritinib may have the ability to be used for more than ALK-rearranged non-small cell lung cancer

Developing new drugs to treat cancer can be a painstaking process taking over a decade from start to Food and Drug Administration approval. Scientists are trying to develop innovative strategies to identify and test new drugs quicker and more efficiently. A team of researchers at Moffitt Cancer Center used cellular drug screening, functional proteomics and computer-based modeling to determine whether drugs with well-known targets may be repurposed for use against other biological targets. They found that an FDA approved drug for non-small cell lung cancer called ceritinib has anti-cancer activity against previously unknown targets. Their results were published today in the journal, Nature Chemical Biology.

For the past 20 years, there has been an emphasis on targeted cancer therapy – targeting a specific driver of cancer development to minimize side effects typically seen with chemotherapy. This personalized approach has been successful in certain types of cancer that are primarily driven by a single DNA alteration, such as found in chronic myeloid leukemia. However, the majority of cancers are not caused by a single mutation; rather, cancer is more commonly caused by a large network of mutations and alterations. Some researchers, including those from Moffitt, are beginning to rethink the targeted approach to cancer therapy. They believe that developing drugs that act on multiple targets, called a polypharmacology approach, may more effectively treat those cancers that have a network of alterations.

In order to identify drugs that act on multiple targets, Moffitt researchers screened 240 drugs that are either FDA approved or in clinical development. They noticed that the drug ceritinib acts differently than other drugs in its class. Ceritinib targets a protein called ALK, and is approved to treat patients with ALK-rearranged metastatic non-small cell lung cancer. Their research found that ceritinib also inhibits the growth of lung cancer cells that do not have genetic alterations in the ALK gene.

After an extensive set of experiments to learn how ceritinib worked in cells without ALK rearrangements, they discovered the drug inhibits several other previously unknown targets, and that these signals converge onto a protein known to be responsible for causing drug resistance to paclitaxel. Importantly, the researchers showed that ceritinib combined with paclitaxel was more effective than either agent alone at reducing cell viability.

These findings suggest that ceritinib together with paclitaxel may be effective against other cancers that do not have ALK rearrangements, and that this drug combination may be used to target a network of changes in cancer.

“The results also demonstrate the benefits of using a combined screening, proteomics and computer-based modeling approach to identify drugs that act on multiple targets and to determine how they function,” said study lead author Uwe Rix, Ph.D., assistant member of the Drug Discovery Program at Moffitt. “In the future, this strategy may facilitate further drug repurposing efforts and lead to an increase in new therapy options for patients with difficult-to-treat diseases.”

Georgetown Clinical Trial of Nilotinib in Alzheimer’s Disease Begins

 A clinical trial to examine the effect of nilotinib on clinical outcomes and biomarkers in people with mild to moderate Alzheimer’s disease has opened at Georgetown University Medical Center (GUMC).

The clinical trial is a phase II, randomized, double blinded, placebo-controlled study to evaluate the impact of low doses of the cancer drug(Tasigna®). GUMC is conducting the study with its clinical partner, MedStar Georgetown University Hospital.

The rationale for using nilotinib is based on laboratory and clinical research conducted by the Georgetown Translational Neurotherapeutics Program (TNP). Nilotinib appears to aid in the clearance of accumulated beta-amyloid (Abeta) plaques and Tau tangles in the brain. Both are hallmarks of Alzheimer’s disease. Nilotinib appears to penetrate the blood-brain barrier and turn on the “garbage disposal” machinery inside neurons (a process known as autophagy) to clear the Tau, Abeta and other toxic proteins.

“In a 2015 proof of concept study at Georgetown, patients with Parkinson’s disease or dementia with Lewy bodies were treated with nilotinib. As my colleagues reported, those who completed the study had a reversal in disease progression, observed both clinically and in key biomarkers—the same biomarkers seen in Alzheimer’s,” explains Scott Turner, MD, PhD, medical co-director of the TNP, who will serve as principal investigator for the study. “But even before the Parkinson’s study, research in the laboratory strongly supported studying this drug in people with Alzheimer’s. The promising results of the Parkinson’s study give an even stronger rationale.”

“When used in higher doses for chronic myelogenous leukemia (CML), nilotinib forces cancer cells into autophagy or cell death. The dose used in CML treatment is significantly higher than what we will use in our Alzheimer’s study,” says Charbel Moussa, MB, PhD, scientific and clinical research director for the Translational Neurotherapeutics Program. “When used in smaller doses once a day, as in this study, it appears nilotinib turns on autophagy for about four to eight hours—long enough to clean out the cells without causing cell death. Toxic proteins that build up again then appear to be cleared when the drug is given again the next day.”

Moussa initially conducted the preclinical research that led to the discovery of nilotinib for the potential treatment of neurodegenerative diseases.

Moussa is an inventor on a US patent owned by Georgetown University and on other pending US and foreign patent applications for use of nilotinib and other tyrosine kinase inhibitors for the treatment of neurodegenerative diseases.

The Alzheimer’s Drug Discovery Foundation is supporting this clinical trial through a $2.1 million grant to Turner. The study has also received private philanthropic support.

Turner conducts additional clinical research supported by funding to Georgetown University from Lilly, Biogen, Merck, Acadia, and Toyama as well as the National Institutes of Health and Department of Defense.

To learn more about this clinical trial, please click here. To learn about other Alzheimer’s clinical studies, please visit the Georgetown Memory Disorders Program website.

Researchers Find Fungus-Fighting Compound in Drug Discovery Center Library

Researchers with the Virginia Tech Center for Drug Discovery have identified a compound that blocks the growth of a fungus that causes deadly lung infections and allergic reactions in people with compromised immune systems.

The research team targeted the switch that allows the fungus Aspergillus fumigatus to survive in iron-deficient conditions like the human body. Specifically, they targeted an enzyme known as SidA, which is essential for the synthesis of molecules called siderophores that are made during infection to steal iron from human proteins.

Furthermore, by performing high-throughput screening in the center’s Drug Discovery Screening Laboratory, they found a compound called Celastrol that blocks the growth of iron-producing organelles in the fungus.

The results were published in the journal ACS Chemical Biology.

“This project shows what an asset the screening lab is to the community,” said Pablo Sobrado, a professor of biochemistry in the College of Agriculture and Life Sciences and director of the screening laboratory. “Without the robots and chemical libraries available at the screening lab, this work would not have been possible. We are very fortunate at Virginia Tech to have this facility.”

Aspergillus fumigatus is common and is typically found in soil and decaying organic matter. Most people are exposed to it daily with little consequence, but it can cause lung damage in people with compromised immune systems, such as organ transplant recipients and people with AIDS or leukemia. The mortality rate of this population, when exposed to the fungus, is more than 50 percent, according to the authors.

“Growing antibiotic resistance is demanding the development of target-directed therapies,” said Julia S. Martin del Campo, a postdoctoral research scientist in Sobrado’s lab. “This approach requires the discovery of enzyme inhibitors that block essential pathogen pathways. The discovery of Celastrol as a SidA inhibitor represents the first building block in the development of drugs against A. fumigatus and related pathogens.”

The Lauder and Newhouse Families Announce New Initiative to Find Treatments for Frontotemporal Degeneration

As of 2016, we still don’t have a single approved drug to cure or even slow the progression of diseases caused by damage to the brain’s neurons. The Alzheimer’s Drug Discovery Foundation (ADDF) and The Association for Frontotemporal Degeneration (AFTD) are determined to change that. Today, they announce a $10 million investment to develop effective treatments for frontotemporal degeneration (FTD), a complex form of dementia that affects more than 50,000 people in the United States.

The Lauder Foundation, Leonard A. Lauder, President, and Ronald S. Lauder have jointly committed $5 million, which will be combined with $5 million from the Samuel I. Newhouse Foundation to create The Treat FTD Fund. The fund, a joint program of AFTD and the ADDF, will accelerate clinical trials for FTD over the next decade. And it has the potential to advance treatments for other neurodegenerative diseases, such as Alzheimer’s, ALS and Parkinson’s.

Leonard A. Lauder, ADDF Board Co-Chairman, said: “My brother and co-chairman, Ronald S. Lauder, and I founded the ADDF to find treatments for Alzheimer’s and other causes of dementia. Partnerships have always been an important part of that mission because they allow us to combine resources and to develop effective drugs faster.”

Donald Newhouse, President of Advance Publications, Inc., added: “My wife, Susan, suffered from primary progressive aphasia, a form of FTD. My brother, Si, suffers from the same dementia. Si’s wife, Victoria, and I and our families are committed to research to find treatments and a cure for FTD and Alzheimer’s. This partnership between the ADDF and AFTD is a significant step forward in carrying out our commitment.”

The partners are optimistic that this initiative will encourage more funders to invest in drug research for FTD and other devastating neurodegenerative diseases. Walter J. Koroshetz, MD, Director of the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, remarked: “The challenge of developing effective treatments for persons with FTD calls for an ‘all hands on deck’ effort. Collaborations like this one will bring great scientists to work on FTD, and set a tone of hope for what NIH and the private sector can achieve together.”

The ADDF and AFTD plan to support new drugs in clinical trials, as well as “repurposed” drugs. Repurposing, in which drugs approved for one disease are used for others, is a growing area of research because it pares down the enormous costs and time of traditional drug development. The Treat FTD Fund will build on recent successes of both foundations in early-stage drug discovery and biomarker development that make clinical trials possible and increase their odds of success. A “Request for Proposals,” expected to be announced this summer, will be available at www.alzdiscovery.org and www.theaftd.org.